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COMMENT 

On the problem of measuring fractal dimensions of random 
interfaces 
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f Fakultat fur Physik, Universitat Konstanz, 7750 Konstanz, Federal Republic of Germany 
$ Laboratoire de Physique de la MatiPre Condenste, Ecole Polytechnique, 91 128 Palaiseau 
Cedex, France 

Received 9 June 1987 

Abstract Various authors have shown that the experimentally observed fractal dimension 
of a random interface may depend drastically on the size of the probe used for the 
measurements. We propose here a general explanation for such dependence that we can 
explicitly calculate for a simple model. 

Physical properties of external surfaces of fractal objects play an important role in 
many scientific domains ranging from electrochemistry, diffusion processes and  
chromatography to heterogeneous catalysis, hydrology and  petrology. The dimension 
dH of the fractal surface is in general not given by d f -  1 where dr is the dimension 
(fractal or Euclidean) of the object itself, as is the case in homogeneous spaces [l]. 
Moreover to characterise the surface completely it may be necessary to consider a 
hierarchy of fractal dimensions depending on the set of physical properties one wants 
to examine [2]. 

Recently, several experiments have attempted to relate measurements of particle 
adsorption or chemical reactions to the structure of fractal surfaces. For example, 
from the quantity of adsorbed particles one can determine experimentally a fractal 
dimension d, associated with the surface [3,4]. This experimental technique has been 
recently examined numerically by Grossman and  Aharony [ 51 when studying the fractal 
dimension of the percolation hull on a square lattice. It appears that the measured 
fractal dimension de depends on the size of the adsorbed particles. For particle 
diameters less than or equal to the lattice constant one finds [6-81 the hull dimension 
d, = i, while for diameters larger than the open space between next-nearest-neighbour 
sites the adsorbed particles are not able to enter large 'bays' which are present in the 
hull. Grossman and Aharony find in this case de = 1.37 * 0.03 in place of the expected 
d, = 1.75, while Meakin and Family [9] obtain de = 1.34. 

A similar problem might also appear when studying the fractal dimension of an  
object from its computerised picture. In this case the pixel size is the limiting parameter. 
Recently, Shaw [lo] has investigated the movement of a drying front in porous 2~ 

materials. The experimental patterns are digitised to make them accessible to a 
numerical study. The front is shown to have a fractal morphology, with dimension 
1.38, smaller than the dimension 1.75 expected for an invasion percolation front. 
However, the pixel size of the front image is larger than the grain size of the porous 
material [ 111. Then apertures in the front smaller than the pixel size cannot be detected, 
which certainly may account for the above discrepancy. 
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To explain these effects we study here a simple model for the fractal interface, 
which is simple enough to be treated rigorously. The model is as follows. We start 
with the von Koch curve which is represented in figure 1. Only two levels of iteration 
are shown. Here the Koch curve will be taken as the interface between two media 
with different properties. For example, the hatched region is matter and the white 
region is empty. Using a sea analogy, we define B ,  and B2 as ‘bays’ in this interface. 
The large bay B ,  is created at level 1 of the hierarchy, the smaller bays B2 are created 
at level 2 .  

..... . . . .  ....... 

Figure 1. Two iteration steps for the modified Koch curve described in the text, with the 
idealised external surface of a material represented by the hatched region. The jetties with 
variable apertures are shown here as broken lines. 

In more realistic interfaces (e.g. percolation hull), bays have apertures of variable 
size, To introduce this feature in the von Koch curve we add  a ‘jetty’ leaving a variable 
open space of length A ,  for a boat to penetrate in the bay B , .  The jetties and  the 
remaining apertures are represented in figure 1 by broken lines. 

The problem of measuring the number of molecules adsorbed on a fractal surface 
is now replaced by the problem of measuring the length of coast, accessible to a boat 
of width b. Here b stands for the diameter of the adsorbed molecule; alternatively, it 
may also represent the pixel size of digitalisation. If b > A , ,  the bay is not accessible; 
if b < A , ,  the bay is accessible. If the apertures A ,  are distributed with a probability 
distribution G,(A,) for all the bays at the same level of hierarchy i, each bay is accessible 
with a probability p , ( b )  

p , (  b )  = 1 - ( 3 , ( A , )  dA,. (1) lob 
In order to determine the accessible part of the coast, we consider a ‘seashore’ 

segment S,-, at level i - 1, with mass M , - ,  . At level i four new segments S, (with mass 
MI) are generated if the bay is open. Only two segments plus the jetty J; are generated 
if the bay is inaccessible (see figure 2 ) .  In figure 2, a ‘segment’ S, is represented by a 
simple line. 

We consider in the following two different choices for the jetties. (a) They are 
considered as part of the seashore, playing exactly the same role as segments SI in the 
iteration (figure 2 ( a ) ) ,  or ( b )  they are not considered as part of the seashore. Their 
length L, is added to the seashore length only if the bay is not accessible, and ignored 
otherwise (figure 2( b ) ) .  Accordingly, successive levels i are connected by the recursion 
relation 

M , - , J p ,  x 5 M ,  + (1 - p , )  x 3 M ,  ( 2 a )  
M,-,-P, x ~ M , + ( ~ - P , ) ( ~ M , + L , )  ( 2 b )  

where p ,  (respectively 1 - p l )  is the probability for the bay to be accessible (respectively 
closed). 
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(b i  
J, 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
J ,  1 

Figure 2. This figure schematises the iterating process of our simple hierarchical model. 
A segment S,_,, symbolising a portion of Koch curve at level I- 1, is replaced at level I 
by the elements shown on the right. The bay E ,  is accessible with probability p , ( b )  or 
closed with probability 1 - p , ( b )  depending on the size of the aperture A ,  with respect to 
the probe width b. During this iteration the jetty Jr-, can be iterated like S,- ,  (case ( a ) )  
or left unchanged (case ( b ) ) .  

Let N be the highest level in the hierarchy where the minimum possible length a 
is reached and hence M N  = a. The total mass M after N iteration steps follows from 
(2), for the different cases ( a )  and ( b ) :  

M = { ( l  +2p1/3) x . .  . x (1 +2pN/3)  x L )  (3a1 
M = { ( 2 / 3 ) ” ( l + p I ) x  . . , x ( l + p N )  

+ ( 2 / 3 )  v - ’ (  1 +pi1 X . . . X (1 + P A  -11[(1 -Pv 1/31 

x [ ( l  -pv - , )P I  +. . . + [ (  1 -p,1/31) x L .  

+ ( 2 / 3 ) N - 2 ( l + p , ) ~ .  . .x ( l+p , - , )  

( 3 b )  
Here L = 3”a is the length of the initial segment S,). 

Now consider a jetty of length L,  at the entrance of a bay E,. This jetty leaves an 
open space A , .  We suppose that the smallest possible aperture is a,. This aperture a, 
is to be compared, e.g., with the aperture a J2 in the case of the hull on a square lattice 
( a 4 3  for the triangular lattice). At level ‘ i ’  the maximum diameter of the aperture is 
L,,  i.e. a o s  A ,  s L , .  By definition, the distribution of apertures is normalised and 

lor: G , ( h , )  dh ,  = 1. (4) 

First suppose that all the bays are completely open (as is the usual von Koch curve). 
Here we have simply 

G , ( A , ) = S ( h , - L , ) .  ( 5 )  
We want to measure the length of the coast accessible to a boat of width b ;  b satisfies 
the inequality 

(6) 
That defines a step n + 1 of iteration above which the bays are not accessible for boats 
of width b. Thus we have 

L,,, < b < L, .  

i =  1 , .  . . , n 
i = n + l ,  . . .  N 



6130 A Bunde, J-F Gouyet and M Rosso 

Then from (3a ,  b )  (using here L, as unit length) one easily recovers that 

M = 5"L, L = 3"L, ( 7 a )  

M = 4"L, L = 3"L,. ( 7 b )  

M = (Ln) ' -4Ldr  (8) 

de = df = In 5/ln 3 ( 9 a )  

d, = df = In 4/ln 3 ( 9 b )  

From the definition of the fractal dimension df 

we obtain immediately the conventional results for cases ( a )  and ( b ) ,  respectively 

which are independent of b. We find the same result for d,, if the bays can have 
apertures of different sizes, but the width of the boat is small enough to enter all bays. 

Now consider the most interesting case (figure 3 ( a ) )  where the diameter of the 
aperture can accept discrete values a,, ab, U: ,  . . . , L,,  with probability q, q ' ,  q",. . . , p ,  
i.e. 

(10) 

where, due  to normalisation, p = 1 - ( 9  + q'+ q"+.  . .), but b is now greater than uo. 
In this case the length of coast reached by a boat of width b does depend on b. 

W, ( A , )  = q6( A ,  - U,) + q'6 ( A ,  - ab) + . . . + p 6 (  A ,  - L, ) 

(bl  

Figure 3. ( a )  The distribution d, of sizes of the apertures A ,  at level i. ( b )  A schematic 
representation of the corresponding fractal dimensions according to expressions ( 1  l ) ,  (12 ) ,  
(13) ( a  or b )  in the text. 
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If a, < b < al, there exists an  iteration step no < N such that L,,,, < b < Lno. Accord- 
ingly we have 

i = 1 ,  . . . , no 
i = no+ 1, .  . . N p . , ( ; - q  

and (3a ,  b )  gives respectively 

M = ( 5  - 29)"0L, 

A4 = [ 1 / ( 1 - 2 q ) ] { ( l  -q ) [2 (2 -q ) ]""-q3""LL, , .  

Using (7) ,  we obtain for the measured fractal dimension 

d, = ln(5 - 2 q ) l l n  3 

ln[2(2 - q)]/ln 3 when q < $ 
when q > i .  

If al, < b < a: we find in close analogy with the above 

ln[2(2 - q - q')]/ln 3 q + q' < f 
1 when q + q ' > ;  

when 
d L = {  

and so on for larger values of b. 
Hence the experimental value of the fractal dimension depends on b (figure 3 ( b ) )  

and makes a jump at each value of the aperture diameter present with a finite probability 
in the fractal structure. 

We believe that the model presented here shows the same characteristic features 
as more usual random interfaces, e.g. the hull of percolation clusters. For such 
interfaces, we have proposed an explanation for the dependence of the measured 
dimension with probe size requiring two assumptions to be fulfilled: the first assumption 
is the asymmetry of the analysis of the interface. This is schematised in our approach 
in a geographical picture, where the interface is represented by a coastline. The 
measurement of the coast length only concerns that part of the coast which can be 
reached by a boat of given size. The second assumption is that the scaling laws between 
distributions of bay apertures and widths are different. Then the experimental value 
of the fractal dimension of the coast length will depend on the boat size, i.e. the 
experimentally observed fractal dimension of the random interface will depend on the 
size of probe. 

We thank B Sapoval for valuable discussions. This work was supported by the Centre 
National d e  la Recherche Scientifique and Deutsche Forschungsgemeinschaft. 

References 

[ l ]  Mandelbrot B B 1982 n e  Fractal Geometry of Nnfure (San Francisco: Freeman) 
[2] Meakin P, Coniglio A, Stanley H E and Witten T A 1986 Phys. Rev. A34 3325 
[3] Pfeifer P, Avnir D and Farin D 1984 J. Srar. Phys. 36 699 
[4] Brochard F 1985 J. Ph.~sique 46 21 17 
[ 5 ]  Grossman T and Aharony A 1986 J .  Phys. A: Math. Gen. 19 L745 
[6] Voss R F 1984 J. Phys. A: Math. Gen. 17 L373 



6132 A Bunde, J-F Gouyet and M Rosso 

[7] Sapoval B, Rosso M and Gouyet J F 1985 J.  Physique Lett. 46 L149 
Bunde A and Gouyet J F 1985 J. Pbys. A: Math. Gen. 18 L285 

[8] Saleur H and Duplantier B 1987 Phys. Reo. Lett. 58 2325 
[9] Meakin P and Family F 1986 Phys. Reo. A 3 4  2558 

[ l o ]  Shaw T M 1986 1986 Mater. Res. Soc. Symp. Proc. 73 215 
[ 1 1 3  Shaw T M 1986 private communciation 


